The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

نویسندگان

  • Mohadeseh Mehrabian
  • Dylan Brethour
  • Hansen Wang
  • Zhengrui Xi
  • Ekaterina Rogaeva
  • Gerold Schmitt-Ulms
  • Ilia V Baskakov
چکیده

Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NCAM1 Polysialylation

Much confusion surrounds the physiological function of the cellular prion protein (PrPC). It is, however, anticipated that knowledge of its function will shed light on its contribution to neurodegenerative diseases and suggest ways to interfere with the cellular toxicity central to them. Consequently, efforts to elucidate its function have been all but exhaustive. Building on earlier work that ...

متن کامل

Morphometrical Study of Polysialylated Neural Cell Adhesion Molecule Positive Cells in Rat Pups Hippocampus Following Induction of Seizure during Pregnancy

Background:The polysialylated neural cell adhesion molecule (PSA-NCAM) is expressed in developing brain. Fetal brain damage is caused by different conditions such as seizure and hypoxia. The present study was designed to investigate the effect of maternal seizures on the number of PSA-NCAM positive cells in pup's hippocampus. Methods: Female Wistar rats were divided into four groups: (a) kindle...

متن کامل

Alteration of neural tissue structure by expression of polysialic acid induced by viral delivery of PST polysialyltransferase.

The expression of polysialic acid (PSA) on neural cell adhesion molecule (NCAM) is known to attenuate cell-cell interactions. During neural development the widespread expression of PSA-NCAM creates permissive conditions for the migration of neuronal and glial precursors and the guidance and targeting of axons. NCAM polysialylation can occur via either of two specific sialyltransferases, ST8SiaI...

متن کامل

The polysialyltransferases interact with sequences in two domains of the neural cell adhesion molecule to allow its polysialylation.

The neural cell adhesion molecule (NCAM) is the major substrate for the polysialyltransferases (polySTs), ST8SiaII/STX and ST8SiaIV/PST. The polysialylation of NCAM N-glycans decreases cell adhesion and alters signaling. Previous work demonstrated that the first fibronectin type III repeat (FN1) of NCAM is required for polyST recognition and the polysialylation of the N-glycans on the adjacent ...

متن کامل

The polysialyltransferase ST8Sia II/STX: posttranslational processing and role of autopolysialylation in the polysialylation of neural cell adhesion molecule.

The presence of alpha2,8-linked polysialic acid on the neural cell adhesion molecule (NCAM) is known to modulate cell interactions during development and oncogenesis. Two enzymes, the alpha2,8-polysialyltransferases ST8Sia IV()/PST and ST8Sia II()/STX are responsible for the polysialylation of NCAM. We previously reported that both ST8Sia IV/PST and ST8Sia II/STX enzymes are themselves modified...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015